Quantum Hydrodynamic models derived from the entropy principle
نویسندگان
چکیده
In this work, we give an overview of recently derived quantum hydrodynamic and diffusion models. A quantum local equilibrium is defined as a minimizer of the quantum entropy subject to local moment constraints (such as given local mass, momentum and energy densities). These equilibria relate the thermodynamic parameters (such as the temperature or chemical potential) to the densities in a non-local way. Quantum hydrodynamic models are obtained through moment expansions of the quantum kinetic equations closed by quantum equilibria. We also derive collision operators for quantum kinetic models which decrease the quantum entropy and relax towards quantum equilibria. Then, through diffusion limits of the quantum kinetic equation, we establish various classes of models which are quantum extensions of the classical energy-transport and drift-diffusion models.
منابع مشابه
Quantum maximum entropy principle and the moments of the generalized wigner function
By introducing a quantum entropy functional of the reduced density matrix, we construct a rigorous scheme to develop quantum hydrodynamic models. The principle of quantum maximum entropy permits to solve the closure problem for a quantum hydrodynamic set of balance equations corresponding to an arbitrary number of moments in the framework of extended thermodynamics. Quantum contributions are ex...
متن کاملFinding Electrostatics modes in Metal Thin Films by using of Quantum Hydrodynamic Model
In this paper, by using a quantum hydrodynamic plasma model which incorporates the important quantum statistical pressure and electron diffraction force, we present the corrected plasmon dispersion relation for graphene which includes a k quantum term arising from the collective electron density wave interference effects (which is integer and constant and k is wave vector). The longitudinal ...
متن کاملElectrostatics Modes in Mono-Layered Graphene
In this paper, we investigated the corrected plasmon dispersion relation for graphene in presence of a constant magnetic field which it includes a quantum term arising from the collective electron density wave interference effects. By using quantum hydrodynamic plasma model which incorporates the important quantum statistical pressure and electron diffraction force, the longitudinal plasmons ar...
متن کاملA derivation of the isothermal quantum hydrodynamic equations using entropy minimization
Isothermal quantum hydrodynamic equations of order O(~) using the quantum entropy minimization method recently developed by Degond and Ringhofer are derived. The equations have the form of the usual quantum hydrodynamic model including a correction term of order O(~) which involves the vorticity. If the initial vorticity is of order O(~), the standard model is obtained up to order O(~). The der...
متن کاملQuantum moment hydrodynamics and the entropy principle
This paper presents how a non-commutative version of the entropy extremalization principle allows to construct new quantum hydrodynamic models. Our starting point is the moment method, which consists in integrating the quantum Liouville equation with respect to momentum p against a given vector of monomials of p. Like in the classical case, the so-obtained moment system is not closed. Inspired ...
متن کامل